Classification of Parkinson's Disease Using Defuzzification-Based Instance Selection
نویسندگان
چکیده
منابع مشابه
Parkinsons Disease Classification using Neural Network and Feature Selection
In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It’s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algor...
متن کاملInstance Selection in Text Classification Using the Silhouette Coefficient Measure
The paper proposes the use of the Silhouette Coefficient (SC) as a ranking measure to perform instance selection in text classification. Our selection criterion was to keep instances with mid-range SC values while removing the instances with high and low SC values. We evaluated our hypothesis across three well-known datasets and various machine learning algorithms. The results show that our met...
متن کاملFISA: Feature-Based Instance Selection for Imbalanced Text Classification
Support Vector Machines (SVM) classifiers are widely used in text classification tasks and these tasks often involve imbalanced training. In this paper, we specifically address the cases where negative training documents significantly outnumber the positive ones. A generic algorithm known as FISA (Feature-based Instance Selection Algorithm), is proposed to select only a subset of negative train...
متن کاملAutomatic, unsupervised classification of dyskinesia in patients with Parkinsons Disease
One of the characteristic symptoms of patients with Parkinson Disease (PD) is a rigidity of movement. These symptoms disappear after administration of Levodopa. However, the long-term use of levodopa causes involuntary movements (dyskinesia). A proper diagnosis requires an automatic, unsupervised method for the detection and classification of levodopa induced dyskinesia. The main problem, howev...
متن کاملSimple Incremental Instance Selection Wrapper for Classification
Instance selection methods are very useful data mining tools for dealing with large data sets. There exist many instance selection algorithms capable for significant reduction of training data size for particular classifier without generalization degradation. In opposition to those methods, this paper focuses on general pruning methods which can be successfully applied for arbitrary classificat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Internet Computing and Services
سال: 2014
ISSN: 1598-0170
DOI: 10.7472/jksii.2014.15.3.109